
Chapter 2

The Equations of Motion of a Rigid

Body with a Liquid-Filled Cavity

Objective of this chapter is to derive the basic equations governing the motion
of the coupled system constituted by a rigid body containing an interior cavity
entirely filled with an incompressible fluid (in short: a liquid), and moving under
the action of a given system of external forces.

2.1 Equations of Motion in an Inertial Frame

Let B be a rigid body moving with respect to the inertial frame I = {O′, e′
1, e

′
2, e

′
3},

under the action of a system, Σ, of external active forces. We denote by F and
MO , in the order, resultant force and torque with respect to O of Σ. With a view
to the applications we have in mind, we suppose that both F and MO are, at

most, functions of time. Likewise, in cases when B is constrained, we shall indi-
cate by Φ

′ and τ ′
O the (unknown) resultant force and torque with respect to O of

the system of reaction forces. In order to simplify the presentation, the point O is
chosen rigidly fixed to B.

We now assume that B contains an interior cavity entirely filled with a liquid,
L , of constant density ρ. Again with a view to the applications, we assume that the
body force acting on L is potential-like, and denote it by ∇U , for some (smooth)
scalar function U = U(x).

The main goal of this work is to investigate the motion of the coupled system

S := B ∪ L .

Let ηO = ηO(t) and $ = $(t) be, in the order, velocity of the point O and
angular velocity of B in I. Also, denote by C = C (t) the region occupied by the
cavity at time t ≥ 0, S(t) := ∂C (t) its boundary, and by w = w(y, t), p = p(y, t),
y ∈ C (t), Eulerian (absolute) velocity and pressure fields of L . We thus have
that balance of linear momentum and conservation of mass for L require that the
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generic motion of L in I be governed by the following set of equations

ρ
(∂w
∂t

+ w · ∇w
)

= div T

divw = 0




 (y, t) ∈
⋃

t>0

C (t) × {t} (2.1)

with T = T(w, p) (modified) Cauchy stress tensor given by

T = µD(w) − (p − U) Î , D(w) := 1
2

(
∇w + ∇w>

)
, (2.2)

and where µ ≥ 0 is the (constant) shear viscosity coefficient of L . To the system
(2.1), (2.2) we need to append appropriate boundary conditions at S. If L is
viscous (µ > 0) we will assume “no-slip” conditions, which in our case take the
form

w(y, t) = ηO + $ × (y − yO) , (y, t) ∈
⋃

t>0

S(t) × {t}, if µ > 0 , (2.3)

with yO = yO(t) position occupied by O, whereas, if L is inviscid (µ = 0) we shall
require

w(y, t) · N = (ηO + $ × (y − yO)) ·N , (y, t) ∈
⋃

t>0

S(t) × {t}, if µ = 0 , (2.4)

with N = N (t) outer unit normal to S(t).
As for the body B, if we also take into account possible constraints, its

motion is ruled by the following general equations of balance of linear momentum:

MB η̇C = F + Φ
′ −

∫

S(t)

T · N , (2.5)

and angular momentum:

d

dt

[
ĴO · $ +MB(yC − yO) × ηO

]
+ MB ηO × ηC

= MO + τ ′
O −

∫

S(t)

(y − yO) × T · N .

(2.6)
In these equations, MB is the mass of B, ηC the velocity of its center of mass C,

and ĴO = ĴO(t) its inertia tensor with respect to O, whose components in I are
given by

(ĴO)′ij =

∫

B(t)

ρB[e′
i × (y − yO)] · [e′

j × (y − yO)] , i, j = 1, 2, 3 , (2.7)

with ρB material density of B and B(t) spatial region occupied by B at time t.
Moreover, the last term on the right-hand side of (2.5) and (2.6) represents the
(internal to S ) force and torque, respectively, exerted by the liquid on B.
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We shall next rewrite the above governing equations in an equivalent form
that better describes the physical aspect of the problem. To this end, we begin to
formally integrate (2.1)1 over C (t), apply Reynolds transport theorem (e.g. [4, p.
78]), integrate by parts and use (2.1)2 to obtain

d

dt

∫

C (t)

ρw =

∫

S(t)

T ·N ,

which, in turn, once replaced in (2.5), delivers

M η̇G = F + Φ
′ , (2.8)

with M := MB +
∫

C (t)
ρ total mass of the system liquid-body, S , and ηG velocity

of its center of mass G. In deriving (2.8) we have used the well-known relation

MB ηC +

∫

C (t)

ρw = M ηG . (2.9)

Equation (2.8) describes the motion of G in I. Similarly, by cross-multiplying both
sides of (2.1)1 by y − yO , we get

∫

C (t)

(y − yO) ×
[
ρ
dw

dt
− divT

]
= 0 , (2.10)

where d/dt := ∂/∂t + w · ∇ denotes material derivative. Since w = dy/dt and
ηO = dyO/dt, we show

∫

C (t)

(y − yO) × ρ
dw

dt
=

∫

C (t)

ρ
d

dt

[
(y − yO) × w

]
+ ηO ×

∫

C (t)

ρw ,

whereas, by Gauss theorem and the symmetry property of T,
∫

C (t)

(y − yO) × div T =

∫

S(t)

(y − yO) × T ·N .

From the last two displayed equations, with the help again of Reynolds theorem
we infer

d

dt

∫

C (t)

ρ (y − yO) × w + ηO ×
∫

C (t)

ρw =

∫

S(t)

(y − yO) × T · N . (2.11)

Therefore, by (2.11) and (2.6) we conclude

d

dt

[
ĴO ·$ +MB(yC − yO) × ηO+

∫

C (t)

ρ (y − yO) × w
]
+M ηO × ηG

= MO + τ ′
O ,

(2.12)
which represents the equation of balance of the total angular momentum of the
system S .

Clearly (2.1)–(2.3), (2.8) and (2.12) are formally equivalent to the equations
(2.1)–(2.3), (2.5), (2.6). Our main objective will be the investigation of the relevant
properties of their solutions.
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2.2 Equations of Motion in a Body-Fixed Frame

We observe a somehow undesired feature of (2.1)–(2.3), (2.8) and (2.12), namely,
they are written in the inertial frame I where the location of the cavity C is time-
dependent. Thus, following the classical procedure employed in the study of rigid-
body dynamics and also adopted in certain problems of liquid-solid interaction
similar to the one treated here (e.g. [3]), we shall rewrite the relevant equations
with respect to a body-fixed frame. To this end, denote by R = {O, e1, e2, e3}
a frame with the origin in O and axes {ei} attached to B. Let {$′

i} be the
components of $ in I, set

A :=




0 −$′
3 $′

2

$′
3 0 −$′

1

−$′
2 $′

1 0




and consider the one-parameter family of tensors Q = Q(t) solutions to the fol-
lowing system

Q̇ = A · Q , Q(0) = Î , t ≥ 0 . (2.13)

Since A (and, consequently, Q> · A · Q) is skew-symmetric, from (2.13) it easily
follows that (e.g. [5, Lemma 1.5 in Chapter III])

Q(t) · Q>(t) = Q>(t) · Q(t) = Î , det Q(t) = 1 , all t ≥ 0 ,

which means that Q(t) is proper orthogonal at each t ≥ 0. We then introduce the
change of variables

x = Q>(t) · (y − yO)

bringing the point y ∈ I into x ∈ R. Observe that, in this transformation, namely,
when referred to the frame R, the cavity becomes the time-independent region, C,
given by

C :=
{
x ∈ R3 : x = Q>(t) · (y − yO(t)) , y ∈ C (t) , t ≥ 0

}
.

If, without loss of generality, we take I ≡ R at time t = 0, it then follows that
C ≡ C (0). Likewise, in the frame R the region occupied by the body B becomes,

B :=
{
x ∈ R3 : x = Q>(t) · (y − yO(t)) , y ∈ B(t) , t ≥ 0

}
,

with B ≡ B(0).

Assumption. Throughout this article, we assume B := Ω1 \ Ω2, C := Ω2,

where Ωi, i = 1, 2, are bounded domains in R3 with Ω2 ⊂ Ω1.
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Define (with P denoting any point rigidly fixed to B and ηP its velocity)

u(x, t) := Q>(t) · w(Q(t) · x + yO(t), t) , p̃(x, t) := (p− U)(Q(t) · x + yO(t), t)

JO := Q>(t) · ĴO · Q(t) , ξP (t) := Q>(t) · ηP (t) , ω(t) := Q>(t) · $(t)

v(x, t) := u(x, t)− ξO(t) − ω(t) × x (relative velocity of L in R)

F (t) := Q>(t) · F(t) , MO(t) := Q>(t) ·MO(t) ,

Φ := Q>(t) · Φ′ , τO := Q>(t) · τ ′
O , n := Q>(t) ·N (t) .

(2.14)
Furthermore, setting a := Q(t) · b, for arbitrary b ∈ R3, from (2.13), (2.14) and
the identity Q>(t) · ($ × a) = ω × b, we deduce Q>(t) · Q̇(t) · b = B · b with

B :=




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 , (2.15)

and {ωi} components of ω in R. By the arbitrariness of b we then infer that Q

must satisfy

Q̇ = Q · B , Q(0) = Î . (2.16)

Using this property and (2.14), by a straightforward calculation (see [3, p. 667-
669] for details) one can then show that equations (2.1)–(2.3), (2.8), (2.12) when
written in the new variables (that is, in the frame R) assume the following form

ρ
(∂u
∂t

+ v · ∇u + ω × u
)

= µ∆u −∇p̃

divu = 0



 (x, t) ∈ C × (0,∞)

u(x, t) = ξO(t) + ω(t) × x , (if µ > 0)

u(x, t) · n = (ξO(t) + ω(t) × x) ·n , (if µ = 0)

}
(x, t) ∈ ∂C × (0,∞)

(2.17)
and

M ξ̇G +M ω × ξG = F + Φ

ȦO + ω × AO +M ξO × ξG = MO + τO ,
(2.18)

with

AO := JO · ω +MBxC × ξO +

∫

C

ρx × u , (2.19)

and MB ≡ MB. Notice that, by definition and (2.7), the inertia tensor JO is
time-independent with components in R given by

(JO)ij =

∫

B

ρB(ei × x) · (ej × x) , i, j = 1, 2, 3 ,
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where ρB(x) = ρB(Q(t) · x + yO).
We may thus conclude that in a body-fixed frameR, the motion of a (possibly

constrained) body with an interior cavity entirely filled with a liquid (viscous or
inviscid) is governed by equations (2.15)–(2.19), in the unknowns (u, p̃, ξG,ω).1

In several significant situations that we will encounter later on, we find it
more convenient to write (2.17)–(2.19) in terms of the relative velocity v (see
(2.14)). In this regard, from (2.17)–(2.19) we find

ρ
(∂v
∂t

+ v · ∇v + ω̇ × x + 2ω × v
)

= µ∆v −∇p

div v = 0




 (x, t) ∈ C × (0,∞)

v(x, t) = 0 , (if µ > 0)

v(x, t) · n = 0 , (if µ = 0)

}
(x, t) ∈ ∂C × (0,∞)

(2.20)
and

M ξ̇G +M ω × ξG = F + Φ

K̇O + ω × KO +M ξO × ξG = MO + τO ,
(2.21)

with p := p̃+ ρ (ω × ξO + ξ̇O) · x − 1
2ρ(ω × x)2,

KO := IO · ω +M xG × ξO +

∫

C

ρx × v , (2.22)

and

(IO)ij = (JO)ij +

∫

C

ρ (x × (ej × x))i . (2.23)

In view of the identity [x× (ej × x)]i = (ei × x) · (ej × x), we recognize that IO

is the inertia tensor, with respect to O, of the whole system S viewed as a single
rigid body. Also, in deriving (2.22) we have used the following relation

MBxC +

∫

C

ρx = M xG . (2.24)

Remark 2.2.1. The governing equations in the form (2.20)–(2.23) reveal an im-
portant feature. Actually, in the case of a freely moving body (Φ ≡ τO ≡ 0), if
we pick O ≡ G the motion of the center of mass (described by (2.21)1) decouples
from the other equations, so that we may first solve for (2.15)–(2.16) and (2.21)2–
(2.23), and successively derive the motion of the center of mass from (2.21)1. If,
in addition, S moves by inertial motion, namely, F ≡ MO ≡ 0, also equations
(2.15)–(2.16) decouple from the others, so that the motion of S may be reduced
to the study of (2.20), (2.21)2 and (2.22)–(2.23).

1Notice that, from the rigid-body formula, ξO = ξG + ω × (O − G).



Chapter 3

Review of Classical Results on the

Motion of the Rigid Body in Absence

of Liquid

The fundamental aspect that characterizes the motion of a rigid body with a
liquid-filled interior cavity is that the presence of the liquid may dramatically
change the dynamics of the body, often (but not always!) exerting a substantial
stabilizing influence. In order to better describe such an important issue, we find
it appropriate to collect and review a number of classical and relevant results
concerning the dynamics of a rigid body under the action of a system of given
external forces.

To begin with, we observe that from (2.18) it follows that, in absence of
liquid, the equations of motion of the rigid body in the frame R reduce to the
following classical ones

MB ξ̇C +MB ω × ξC = F + Φ

JO · ω̇ + ω × (JO · ω) +MB ξO × ξC = MO + τO ,
(3.1)

in conjunction with equations (2.15)–(2.16).

Particularly for the important role that it will play in our later considerations,
we would like to recall the basic properties of the inertia tensor JO. Since it is sym-
metric, we can always find a body-fixed frame, {O, ei}, with {ei} ortho-normalized
eigenvectors of JO, where JO becomes diagonal. This frame [resp. its axes] is re-
ferred to as principal frame [resp. axes] of inertia and, if O ≡ C, as central frame

[resp. axes] of inertia. The only non-zero components of JO in {O, ei} are denoted
by A (≡ (JO)11), B (≡ (JO)22), and C (≡ (JO)33), and called principal [resp. cen-

tral ] moments of inertia. Mathematically, they are eigenvalues corresponding to
the eigenvectors e1, e2 and e3, respetively. From the physical viewpoint, they rep-
resent the moments of inertia of B with respect to, in the order, (O, e1), (O, e2),
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and (O, e3). Precisely,

A =

∫

B

ρ̂ (x2
2 + x2

3) , B =

∫

B

ρ̂ (x2
1 + x2

3) , C =

∫

B

ρ̂ (x2
1 + x2

2) , (3.2)

where ρ̂ = ρ̂(x) is the (mass) density of B.

In the present chapter we shall present and analyze a number of results
pertaining to solutions to the system (3.1), under different assumptions on the
external forces. One of our main objectives will be the study of the stability prop-
erties, in the sense of Lyapunov, of steady-state (time-independent) solutions to
(3.1)2–(2.15)–(2.16). In this regard, we shall frequently use the classical stability
and instability criteria of Lyapunov and Chetayev that, for reader’s sake, we
would like to recall in their general formulation.

Consider the differential equation

Ẋ = f(X) , X ∈ RN (3.3)

where f : RN → RN with f(0) = 0 is enough smooth as to ensure existence,
uniqueness and continuous data-dependence of solutions to (3.3). We shall say
that the equilibrium X = 0 is stable, if for any ε > 0 there is δ = δ(ε) > 0 such
that

|X(0)| < δ implies sup
t≥0

|X(t)| < ε ,

and unstable otherwise. The following classical results hold (e.g., [5, Theorems 1.1
and 1.2 in Chapter X].

Proposition 3.0.1. Suppose there is R > 0 and a continuous function V : X ∈
BR(0) 7→ V (X) ∈ [0,∞) such that (i) V (0) = 0 and V (X) > 0 for X 6= 0, and
(ii) supt≥0 V (X(t)) ≤ V (X(0)), whenever V is evaluated along the solutions to
(3.3). Then, X = 0 is stable.

Proposition 3.0.2. Suppose there exist a neighborhood U of X = 0, an open set
U1 with 0 ∈ U1, and and a function V : U1 7→ [0,∞) of class C1 with the following
properties: (i) V (X) = 0 at all X ∈ ∂U1 ∩ U , and (ii) V (0) = 0, and V, V̇ > 0
in U1 ∩U −{0}, the derivative being evaluated along the solutions to (3.3). Then
X = 0 is unstable.

3.1 Inertial Motions

We begin to consider the simplest situation, namely, when B moves freely in the
whole space, in absence of external forces, namely, F (t) = MO(t) = Φ = τO ≡ 0.
Corresponding motions are often referred to as inertial motions. As we already
mentioned (see Remark 2.2.1), in such a case (3.1) and (2.15)–(2.16) decouple.
In what follows, we will focus our analysis on the properties of the solutions to



3.1. Inertial Motions 11

(3.1).1 From (3.1)1 we then obtain ξ̇C + ω × ξ = 0, which means that the center
of mass C moves by uniform and rectilinear motion in the inertial frame I. Thus,
choosing O′ ≡ O ≡ C, the dynamics of B reduces to study its motion around C,
which means to find all possible solutions to the Euler equation

JC · ω̇ + ω × (JC · ω) = 0. (3.4)

This equation admits two fundamental first integrals. In fact, dot-multiplying (3.4)
by ω we at once deduce that the kinetic energy, T , must be conserved along the
generic solution:

T (t) := 1
2ω(t) · JC · ω(t) = const. (3.5)

Likewise, dot-multiplying (3.4) by JC · ω we recover that the magnitude of the
angular momentum must be conserved as well:

|JC · ω(t)|2 = const. (3.6)

We next observe that, choosing {C, ei} coinciding with the central frame of
inertia, we obtain

JC ·ω = Aω1 e1 + Bω2 e2 + Cω3 e3 , (3.7)

with A, B and C are central moments of inertia given in (3.2). We can then write
equation (3.4) component-wise as follows

A ω̇1 − (B − C)ω2 ω3 = 0

B ω̇2 − (C − A)ω3 ω1 = 0

C ω̇3 − (A − B)ω1 ω2 = 0 .

(3.8)

In the next subsections we shall analyze some important properties of relevant
solutions to (3.8). To this end, and without loss of generality, we will assume
throughout

A ≤ B ≤ C .

3.1.1 Steady-State Motions and their Stability Properties

These motions are characterized by the condition ω̇ = 0, and are often referred
to as permanent rotations. From (3.8) we obtain at once the well-known result
that permanent rotations may occur only around the central axes of inertia, whose
direction is determined, for a fixed body shape, solely by the distribution of mass
of B. In view of (3.4), we obviously derive that in a permanent rotation the axis
of rotation is parallel to the direction of the angular momentum, which is constant
in the inertial frame I. We also observe that, due to the uniqueness theorem
for the initial-value problem associated to system (3.8), permanent rotations may

1As a matter of fact, once (3.1) are solved, namely, the angular velocity is found, the function
Q(t) and hence the motion of B in I, is obtained via a classical procedure; see [10, §3.4].
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effectively be realized by initially imparting a rotation around any of the central
axes.

We wish now to investigate the stability properties of such motions with the
help of Proposition 3.0.1 and Proposition 3.0.2. In this regard, denote by s0 := ω0 e,
ω0 ∈ R−{0}, e ∈ {ei}, a generic permanent rotation.2 As originally proved in [1,
§15], these properties can be fully characterized in terms of the moment of inertia
with respect to that central axis around which they occur; see Theorem 3.1.1.

Thus, let s0 := p0 e1 be the basic motion, and let

ω(t) := p0 e1 + ζ(t) , ω2 = ζ2(t) , ω3 = ζ3(t)

be a corresponding “perturbed motion.” From (3.5) and (3.6) we thus get

2T (t) := A ζ2
1 (t) + B ζ2

2(t) + C ζ2
3(t) + 2A p0ζ1(t) = const. (3.9)

and

K(t) := A2 ζ2
1 (t) + B2 ζ2

2 (t) + C2 ζ2
3 (t) + 2A2 p0 ζ1(t) = const. . (3.10)

Define
V (ζ) := (K − 2A T ) + 4T 2 . (3.11)

By direct substitution, from (3.9) and (3.10) we find

V (ζ) = B (B− A)ζ2
2 + C (C− A)ζ2

3 + (A ζ2
1 + 2A ζ1p0 + B ζ2

2 + C ζ2
3 )2

which shows that if
A < B ≤ C, (3.12)

then V (ζ) ≥ 0. Actually, V (ζ) = 0 if and only if ζ = 0, provided ζ ranges in a
suitable ball centered at 0. In fact, if V (ζ) = 0, from (3.12) we deduce ζ2 = ζ3 = 0
and either ζ1 = 0 or else ζ1 = −2p0. However, the latter is excluded if, for example,
ζ ∈ B|p0|(0). Thus, V is positive definite in B|p0|(0). Moreover, from (3.9)–(3.11)

we also have V̇ = 0, so that, by Proposition 3.0.1, we conclude that under the
assumption (3.12), namely, the axis of rotation is the one of minimum moment of
inertia, the permanent rotation p0 e1 is stable. Likewise, if s0 = r0 e3 the two first
integrals become

2T (t) := A ζ2
1 (t) + B ζ2

2(t) + C ζ2
3(t) + 2C r0ζ3(t) = const.

K(t) := A2 ζ2
1 (t) + B2 ζ2

2 (t) + C2 ζ2
3 (t) + 2C2 r0 ζ3(t) = const. .

Thus, by choosing this time

V (ζ) := (2C T −K) + 4T 2 . (3.13)

2Observe that for any initial datum ω0 ∈ R3, the corresponding initial-value problem asso-
ciated to (3.8) has a unique, global and smooth solution that equals ω0 at time t = 0. This is
consequence of classical results on system of ODE’s along with the uniform bound |ω(t)| ≤ const.
that follows from conservation of energy (3.5).
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and employing an entirely similar argument, one can show that if

A ≤ B < C , (3.14)

the permanent rotation r0 e3 (occurring around the axis of maximum moment of
inertia) is stable.

It remains to investigate the case

A < B < C , (3.15)

and s0 := q0 e2, namely, the permanent rotation occurs around the axis of inter-
mediate moment of inertia. We shall show that this rotation is unstable. Actually,
choosing

V = −ζ1ζ3
from (3.8) we deduce

V̇ = (ζ2 + q0)
C (C − B) ζ3

3 + A (B − A) ζ2
1

A C
.

Therefore, defining

U = {ζ ∈ R3 : ζ2 > −q0} , U1 = {ζ ∈ R3 : ζ1 ζ3 < 0} ,

we immediately recognize that all assumptions of Proposition 3.0.2 are satisfied,
which implies that s0 := q0 e2 is unstable.

The above results are summarized in the following.

Theorem 3.1.1. (Stability of Permanent Rotations) Permanent rotations occurring
around the central axes of either maximum or minimum moment of inertia are
stable. Those around the intermediate central axis are, instead, unstable.

3.1.2 Unsteady Motions.

As is well known, the simplest situation occurs when two of the central moments of
inertia coincide. In this case, equations (3.8) admit a class of remarkable particular
solutions known as regular precessions. In fact assume, to fix the ideas, A = B, so
that from (3.8) we deduce for some r0 ∈ R,

A ω̇1 − (A − C) r0 ω2 = 0

A ω̇2 + (A − C) r0 ω1 = 0

ω3(t) = r0 , all t ≥ 0 ,

which implies

ω(t) = ω1(t)e1 + ω2(t)e2 + r0 e3 , (3.16)
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where

ω1(t) = ω1(0) cos(Ω t) + ω2(0) sin(Ω t) ,

ω2(t) = ω2(0) cos(Ω t) − ω1(0) sin(Ω t) ,
(3.17)

and Ω := (1 − C/A)r0, ω1(0) ≡ −ω̇2(0)/Ω, ω2(0) ≡ ω̇1(0)/Ω. Notice that, in
view of the uniqueness property for the initial-value problem associated to (3.8),
the motion described by (3.16)–(3.17) can effectively be realized by prescribing
appropriate initial conditions.

Now, from (3.16) and (3.7) we also obtain

JC · ω = A (ω1 e1 + ω2 e2) + C r0 e3 ,

which in combination with (3.16) provides

ω(t) =
1

A
JC · ω +

(
1− C

A

)
r0e3 .

Therefore, we find that the angular velocity is the sum of two vectors, the first
(JC · ω) being constant in the inertial frame, while the other ((1 − C/A)r0 e3)
constant in the body-fixed frame. As a result, by the theory of compound motions
[21, pp. 165–167], this allows us to conclude that the motion of B is a regular
precession. Precisely, when observed from I, B rotates uniformly around e3 while
e3 rotates, also uniformly, around the constant direction of the angular momentum,
forming with the latter the constant (nutation) angle θ = cos−1(C r0/|JC · ω|).

In absence of “mass symmetry”, namely, A < B < C, the resolution of system
(3.8) under given initial condition becomes much more involved, mainly, due to
the presence of the nonlinear terms. As a consequence, the motion of B appears
to be somehow complicated to resolve. However, as shown originally by Jacobi [7]
one can still obtain an analytical closed-form solution in terms of (Jacobi) elliptic
functions:

ω1(t) = a1 cn (σ t) , ω2(t) = a2 sn (σ t) , ω3(t) = a3 dn (σ t) ,

where ai, i = 1, 2, 3, are constants and σ = σ(A,B,C); see [10, §3].

Alternatively, the motion of B admits the classical and elegant geometric
representation due to Poinsot [15]. More precisely, B moves as if it were rigidly
connected to the ellipsoid of inertia

{(x, y, z) ∈ R3 : A x2 + B y2 + C z2 = 1}

and this, in turn, as a rigid body, would roll without sliding on a fixed plane
orthogonal to the (constant) direction of the angular momentum; see, for details
[10, §4].
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3.2 Heavy Body

We now consider the case when B moves under the action of gravity, g, that we

assume to have direction and orientation of the axis −e′
3 in the inertial frame I.

If the body is entirely unconstrained, then its dynamics can be reduced to
cases that we already analyzed in previous subsections. Actually, the torque due
to the weight p = MB g of B with respect to its center of mass C is identically
vanishing. As a consequence, from (3.1) with O ≡ C we get that, on the one hand,
the motion of B around C is governed by (3.4) –a case we already discussed– and,
on the other hand, C moves, with respect to the inertial frame, like a point-mass
with mass MB, subject to the constant force p, which represents a classical and
elementary problem in Newtonian particle mechanics.

Therefore, in order to make its dynamics more interesting, B must be suitably
constrained. Two most significant and classical examples in this regard, are when
B moves by keeping fixed (with respect to the inertial frame) either a point, P
(say) rigidly fixed to it, that is, B executes a spherical motion around P , or else
all points of a straight line r passing through B, namely, B executes a rotational

motion around r.
Objective of the following subsections is to review the relevant features of

these two classes of motions and to present corresponding main results.

3.2.1 Motions Around a Fixed Point

Let us choose O ≡ P and suppose that the constraint is frictionless. Under this
assumption, one can readily show that τO = 0. Moreover, setting g := g/g, we
have

MO(t) = Q>(t) · [(yC − yO) × p] = MB g xC × (Q>(t) · g) .

As a result, if we define γ := Q>(t) · g, the system (3.1) becomes

MB ξ̇C +MB ω × ξC = MB g γ + Φ

JO · ω̇ + ω × (JO · ω) = MB gxC × γ ,
(3.18)

to which we have to add the equation for the unknown function γ = γ(t) that, by
(2.15)–(2.16), takes the form of the classical Poisson equation:

γ̇ + ω × γ = 0 . (3.19)

At this point we observe that equations (3.18)2–(3.19) and (3.18)1 decouple. In
fact, once we solve (3.18)2–(3.19) for ω and γ we can then obtain the motion of
the center of mass C from (3.18)1. In what follows we will focus our attention on
solutions to (3.18)2–(3.19), commenting about the motion of C as necessary.

As in the case of inertial motions, also in the current situation we can
show that (3.18)2–(3.19) admits two relevant first integrals. More precisely, dot-
multiplying both sides of (3.18)2 by ω and those of (3.19) by xC we deduce the
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conservation of total energy:

T (t) − U(t) := 1
2 ω(t) · JO · ω(t) −MBg γ(t) · xC = const. (3.20)

We next dot-multiply (3.18)2 by γ, (3.19) by JO · ω and sum side-by-side the
resulting equations. This produces the conservation of the vertical component of

the total angular momentum:

γ(t) · JO · ω(t) = const. (3.21)

Finally, to the above integrals, we should add a third one, of entirely kinematic
nature, obtained by dot-multiplying both sides of (3.19) by γ:

γ2
1(t) + γ2

2(t) + γ2
3 (t) = 1 . (3.22)

The integrals (3.20)–(3.22) will play a fundamental role in the stability analysis
that we shall perform later on.

3.2.1.1 Steady-State Motions.

This type of motion is defined as one where the angular velocity is constant in
time, ω̇ = 0; in other words, B executes a permanent rotation. As expected, a
permanent rotation may occur if and only if γ̇ = 0 as well. To see this, we observe
that from (3.18)2 with ω(t) = const. it follows xC ×γ(t) = const. Dot-multiplying
both sides of (3.19) by xC gives

˙︷ ︸︸ ︷
γ · xC = γ × ω · xC ,

whereas dot-multiplying by ω those of (3.18)2 (with ω̇ = 0) furnishes γ×ω ·xC =
0, and we conclude γ = const. Conversely, if γ(t) = const. then, from (3.19) it
follows ω = λ(t)γ. However, dot-multiplying both sides of (3.18)2 by ω and using
the latter, we conclude λ(t) = const. Consequently, permanent rotations may occur

if and only if both ω and γ are constant. In such a case, using (3.18)–(3.19), it
follows that (ω, γ) must satisfy the following system

ω × γ = 0 , ω × (JO · ω) = MB gxC × γ . (3.23)

The first of these equations furnishes ω = λγ for some λ ∈ R. Moreover, if we
choose the body-fixed frame R as principal frame of inertia with respect to O, we
get

JO ·ω = Aω1 e1 + Bω2 e2 + Cω3 e3 ,

with A, B and C principal moments of inertia. As a consequence, denoting by
(x0, y0, z0) the coordinates of xC , the equations in (3.23) are equivalent to the
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following ones in the unknowns λ and γ = (γ1, γ2, γ3)






λ2(C − B)γ2γ3 = MB g (y0γ3 − z0γ2),

λ2(A − C)γ1γ3 = MB g (z0γ1 − x0γ3),

λ2(B − A)γ1γ2 = MB g (x0γ2 − y0γ1),

ω = λγ , γ2
1 + γ2

2 + γ2
3 = 1.

(3.24)

From the physical viewpoint, this means that, when viewed from the inertial frame,
in a permanent rotation the body uniformly rotates around the vertical axis pass-
ing through O, aO, with an “inclination” with respect to aO characterized by di-
rection cosines γ1, γ2, and γ3 that solve (3.24) along with a corresponding angular
velocity, for a given mass of the body and location of its center of mass.

System (3.24) admits, in particular, the following set of elementary but note-
worthy solutions:

γ ≡ ±ei , i = 1, 2, 3,

with ω given in (3.24)4 for some λ 6= 0. They represent permanent rotations
occurring around one of the principal axes, oriented along the direction of gravity.
However, in general, the class of solutions to (3.21) is extremely rich. A complete
and detailed analysis is performed in [10, §§8.31, 8.32].

For the applications we have in mind, here we shall limit ourselves to single
out and discuss in details a special class of solutions corresponding to the case
when the center of mass lies on one of the principal axes. To this purpose, we take
C ∈ (O, e3) and orient the frame {O, ei} in such a way that z0 > 0. Thus, setting

β2 := MB g z0 (> 0) , (3.25)

equations (3.24) specialize to the following ones






λ2(C − B)γ2γ3 = −β2 γ2,

λ2(A − C)γ1γ3 = β2 γ1 ,

λ2(B − A)γ1γ2 = 0 ,

ω = λγ , γ2
1 + γ2

2 + γ2
3 = 1.

(3.26)

In order to characterize and describe the physical meaning of the class, S, of
solutions to this system, we begin to observe that from (3.25) and (3.26) it follows
that every element of S must have γ3 6= 0, which means that in every steady-state
motion the e3-axis cannot be horizontal, namely, either γ‖e3, or |γ3| ∈ (0, 1).
Moreover, again from (3.26), we find that λ = 0 (no motion) is possible if and
only if γ = ±e3. We then conclude that the class S satisfies

S ⊃ PR , (3.27)
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where

PR := {(ω, γ) ∈ R3 × S2 : γ = ±e3, ω = λγ , some λ ∈ R} . (3.28)

Clearly, members of PR are “pure” rotations, where B rotates with constant
(possibly zero) angular velocity around e3, with e3 parallel to aO. Our next task
is to find all other motions in S that are not pure rotations. Setting PR′ := S−PR,
by what we said we have

PR′ ⊂ {(ω, γ) ∈ R3 × S2 : ω = λγ, some λ ∈ R − {0}, |γ3| < 1 , γ3 6= 0} .

The characterization of PR′ depends on the relative magnitude of the principal
moments of inertia, according to the following cases.

(i) A = B = C. From (3.26)1,2,3 we obtain γ1 = γ2 = 0, γ2
3 = 1, which implies

PR′ = ∅ .

(ii) A = B 6= C. From (3.26)3 we find no further restrictions on γ1, γ2 other than
that imposed by γ ∈ S2 , and we deduce

PR′ ≡ SP0 := {(ω, γ) ∈ R3 × S2 : ω = λγ , λ ∈ R − {0} ,

γ3 = − β2

λ2(C − A)
, |γ3| < 1} .

(3.29)

(iii) A 6= B 6= C. From (3.26)3 we get either γ1 = 0 or γ2 = 0, and thus infer

PR′ = SP1 ∪ SP2

where

SP1 := {(ω, γ) ∈ R3 × S2 : ω = λγ , λ ∈ R − {0} ,

γ1 = 0 , γ3 = − β2

λ2(C − B)
, |γ3| < 1} .

SP2 := {(ω, γ) ∈ R3 × S2 : ω = λγ , λ ∈ R − {0} ,

γ2 = 0 , γ3 = − β2

λ2(C − A)
, |γ3| < 1} .

(3.30)

(iv) A 6= B = C. From (3.26)1 it follows γ2 = 0, and so

PR′ = SP2 .

(v) C = A 6= B. From (3.26)2 it follows γ1 = 0, and so

PR′ = SP1 .
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All the above leads to the following characterization of the solution set S.

Theorem 3.2.1. - Let S be the class of solutions to (3.26). Then, the following
holds.

1. If A = B = C, then S = PR;

2. If A = B 6= C, then S = PR ∪ SP0;

3. If A 6= B 6= C, then S = PR ∪ SP1 ∪ SP2;

4. If A 6= B = C, then S = PR ∪ SP2;

5. If C = A 6= B, then S = PR ∪ SP1 ,

where PR and SPi, i = 0, 1, 2 are defined in (3.28)–(3.30).

As for the physical meaning of solutions in the the classes SPi, we see that
they are representative of so-called steady precessional motions where, when ob-
served from the inertial frame, B rotates uniformly around aO, with the e3-axis
describing a cone of constant semi-aperture

cos−1

(
− β2

λ2(C − A)

)
for classes SPi, i = 0, 2

cos−1

(
− β2

λ2(C − B)

)
for class SP1 .

Moreover, the direction of the axis of rotation, which is parallel to the gravity, lies
in the plane (O; e2, e3) (for SP1) and in the plane (O; e1, e3) (for SP1) We finally
notice that for a steady precession to be effectively realized it is necessary (and
sufficient) that the magnitude of the angular velocity ω is sufficiently large and,
precisely,

ω2 >
β2

|C− A| for classes SPi, i = 0, 2

ω2 >
β2

|C− B| for class SP1 .

3.2.1.2 On the Stability of Steady-State Motions.

In this subsection, we will analyze the stability properties of some relevant solu-
tions to (3.26). To this end, let

s0 := (λγ0, γ0) ∈ R3 × S2

be a given solution to (3.26), and let

ω(t) = λγ0 + ζ(t) , γ(t) = γ0 + z(t) (3.31)



20 Chapter 3. Review of Classical Results on the Motion of the Rigid Body

be a corresponding “perturbed motion”, namely, a solution to (3.18)2–(3.19), with
C ∈ (O, e3). As in the previous section, also here we shall use the methods of
Lyapunov to investigate the stability of s0. To this end, we observe that from the
first integrals (3.20)–(3.22) it results that the following functions Vi, i = 1, 2, 3,
are constant along solutions to (3.18)2–(3.19):

V1 := A (ζ2
1 + 2λγ01ζ1) + B (ζ2

2 + +2λγ02ζ2) + C (ζ2
3 + 2λγ03ζ3) − 2β2 z3 ,

V2 := A (ζ1z1 + λγ01z1 + γ01ζ1) + B (ζ2z2 + λγ02z2 + γ02ζ2)

+C (ζ3z3 + λγ03z3 + γ03ζ3)

V3 := z2
1 + z2

2 + z2
3 + 2γ0 · z .

(3.32)

Upright Spinning Top. Let

s0 = (r0 e3,−e3) , r0 6= 0 .

This solution is representative of a permanent rotation of B around the principal
axis e3 aligned with the vertical direction, and with the center of mass C at its
highest position (spinning top in its upright position).

We follow the arguments of [1, §10], [18] and [11]. To this end, we begin to
notice that, in our case, (3.32) furnishes:

V1 := A ζ2
1 + B ζ2

2 + C (ζ2
3 + 2r0ζ3) − 2β2 z3 = const. ,

V2 := A ζ1z1 + B ζ2z2 + C (ζ3z3 + r0z3 − ζ3) = const. ,

V3 := z2
1 + z2

2 + z2
3 − 2z3 = const. .

(3.33)

Case 1: A = B (Lagrange Top). Recalling that C ∈ (O, e3), from (3.18)2 we deduce
the further first integral ω3(t) = r0 + ζ3(t) = const. This implies that the function

V4 := ζ3 (3.34)

is constant along solutions to (3.18)2–(3.19). The leading idea is now to take a
suitable combination of the functions Vi, i = 1, . . . , 4, in a way that all linear terms
cancel out, so that the resulting function, V , reduces to a quadratic form in the
relevant variables. Since V̇ = 0 along solutions to (3.18)2–(3.19), by Proposition
3.0.1, the stability of s0 will be ensured by those conditions that make V positive
definite. With this in mind, we choose

V := V1 + 2χV2 + (C r0χ − β2)V3 + µV 2
4 + 2C (χ− r0)V4 ,

with χ and µ suitable real parameters that will be specified later on. Using, in the
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latter, (3.33) with A = B, and (3.34) we thus obtain

V = Q1 +Q2 +Q3

Q1 := A ζ2
1 + (C r0χ − β2)z2

1 + 2χA ζ1z1

Q2 := A ζ2
2 + (C r0χ − β2)z2

2 + 2χA ζ2z2

Q3 := (C + µ) ζ2
3 + (C r0 χ− β2)z2

3 + 2χC ζ3z3 .

Applying Sylvester’s criterion, we deduce that bothQ1 and Q2 are positive-definite
if and only if there is χ ∈ R such that

Aχ2 − C r0 χ+ β2 < 0, (3.35)

which is indeed the case, provided the discriminant is positive, namely,

r20 >
4 Aβ2

C2
. (3.36)

As for Q3, again by the above criterion, we get that it is positive definite provided
the following two conditions are met

C + µ > 0 , (C + µ)(Cr0χ− β2) − χ2C2 < 0 .

However, this last displayed inequality coincides with (3.35) with the choice

µ =
C

A
(C − A) , (3.37)

in which case we also have C + µ = C2/A > 0. We may therefore conclude that
condition (3.36) ensures that V is positive definite, which, in turn, secures the
stability of the steady-state motion s0. As a matter of fact, the strict negation of
(3.36), namely,

r20 <
4 Aβ2

C2
. (3.38)

implies the instability of s0. The proof of this property is established by a spectral
stability analysis (Lyapunov’s “linearization principle”) and goes as follows [11,
Theorem 15.10.1]. Replacing the “perturbed motion” (3.31) with γ0 ≡ −e3, λ ≡
−r0, back into (3.18)2–(3.19), and recalling that C ∈ (O, e3) and A = B, we show
that the “perturbation” (ζ, z) satisfies the following autonomous system

Ẋ = A · X + N(X) ,

where X = (ζ1, ζ2, z1, z2), N is smooth with |N(X)|/|X| → 0 as |X| → 0, and

A :=




0 σ 0 −β2/A

−σ 0 β2/A 0

0 1 0 r0

−1 0 −r0 0
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with σ := (A − C)/A. By a direct computation, one can then prove that if (3.38)
holds, the four eigenvalues of A are of the type λ0, λ0, −λ0 , −λ0, for some λ0 ∈ C

with both <{λ0} ,={λ0} 6= 0; see [11, p. 511] for details. As a consequence, two
eigenvalues must have positive real part, which in turn, by a classical result due to
Lyapunov [5, Corollary 6.1 in Chapter III], ensures that the state s0 is unstable.

The above results can be then summarized in the following.

Theorem 3.2.2. Let s0 := (r0 e3,−e3), r0 6= 0, be a solution to (3.26) and assume
A = B (symmetric top, spinning in the upright position). Then if (3.36) holds, s0
is stable, whereas if (3.38) holds, s0 is unstable.

Case 2: C > A,B (Generic Top). We follow the argument of [17]. As in the previous
case, we will form a combination, V , of the functions Vi, i = 1, 2, 3, in (3.33) with
the property that V is quadratic in a neighborhood of the origin, U . Since V̇ = 0
along solutions to (3.18)1–(3.19), by Proposition 3.0.1, the conditions ensuring
that V is positive definite in U will also guarantee the stability of s0. We thus
choose

V := V1 + 2 r0 V2 + (C r20 − β2)V3 + η V 2
3 , (3.39)

with η a parameter that will be fixed later on. Replacing the expressions of the
Vi’s from (3.33) back in (3.39) furnishes

V = Q1 + Q2 + Q3 + O
Q1 := A ζ2

1 + 2A r0ζ1z1 + (C r20 − β2) z2
1

Q2 := B ζ2
2 + 2B r0ζ2z2 + (C r20 − β2) z2

2

Q3 := C ζ2
3 + 2C r0ζ3z3 + (C r20 − β2 + 4 η) z2

3

O := η (z4 − 4z3z
2) .

(3.40)

By Sylvester’s criterion we prove at once that Q1 and Q2 are both positive definite
if

r20 >
β2

(C − M)
, M := max{A,B} . (3.41)

As for Q3, again by that criterion, we show that it is positive definite for any
admissible value of C, r0 and β, if we pick, for example, η = β2/2. Thus, choosing
U so that |O| < εz2 for sufficiently small ε > 0, we conclude that if (3.41) holds,
then V is positive definite in U . We thus have proved the following.

Theorem 3.2.3. Let s0 be as in Theorem 3.2.2 and assume C > A,B (generic top,
spinning in the upright position). 3 Then, if (3.41) holds, s0 is stable.

3Notice that, under the stated assumption on C, condition (3.39) is relevant when A 6= B

(asymmetric top). This because, otherwise, the stability requirement (3.36) is less restrictive
and, therefore, more convenient.
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Hanging Spinning Top. Another noteworthy steady-state solution “complemen-
tary” to that considered in the previous case is the one where B is imparted a
uniform rotation around e3 with e3 still parallel to aO but with its center of mass
C in its lowest position (hanging spinning top). This motion is represented by the
solution of the form 4

s0 := (r0 e3, e3) , r0 6= 0.

The functions in (3.32) specialize to the following ones:

V1 := A ζ2
1 + B ζ2

2 + C (ζ2
3 + 2r0ζ3) − 2β2 z3 ,

V̂2 := A ζ1z1 + B ζ2z2 + C (ζ3z3 + r0z3 + ζ3)

V̂3 := z2
1 + z2

2 + z2
3 + 2z3

Case 1: A = B (Lagrange Top). We recall that, in this situation, the further first
integral (3.34) holds. Let

V := V1 + 2χ V̂2 + (β2 − C r0χ)V̂3 + µV 2
4 − 2C (χ+ r0)V4 .

Replacing in the latter the expressions of the Vi’s and V̂i’s, we obtain

V = Q̂1 + Q̂2 + Q̂3

Q̂1 := A ζ2
1 + (β2 − C r0χ)z2

1 + 2χA ζ1z1

Q̂2 := A ζ2
2 + (β2 − C r0χ)z2

2 + 2χA ζ2z2

Q̂3 := (C + µ) ζ2
3 + (β2 − C r0χ)z2

3 + 2χC ζ3z3 .

By Sylvester’s criterion, Q̂i, i = 1, 2, are positive definite if there exists χ ∈ R

such that

Aχ2 + C r0χ− β2 < 0 .

Since the discriminant, C2r20 + 4A β2, is always positive, this inequality can be
satisfied for any given value of the physical parameters by choosing χ suitably. As
for Q̂3, it is positive definite if

C + µ > 0 , (C + µ)(β2 − C r0 χ) − χ2C2 > 0 ,

which, by exactly the same argument used earlier on, are always satisfied with the
choise of µ as in (3.37). We thus have proved the following.

Theorem 3.2.4. Let s0 := (r0 e3, e3), r0 6= 0, be a solution to (3.26) with A = B

(hanging spinning symmetric top). Then s0 is always stable.

4We assume the top is spinning, that’s why we require r0 6= 0. However, the results stated in
the next two theorems continue to hold (trivially) also in the case r0 = 0.
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Case 2: A 6= B. The stability of s0 is now appropriately investigated by using the
following combination of the above quantities:

V = V1 − 2r0V̂2 + (β2 + Cr20)V̂3 := Q̂1 + Q̂2 + Q̂3

where
Q̂1 := A ζ2

1 − 2r0A ζ1z1 + (β2 +Cr20)z
2
1

Q̂2 := B ζ2
2 − 2r0B ζ2z2 + (β2 +Cr20)z

2
2

Q̂3 := C ζ2
1 − 2r0C ζ3z3 + (β2 +Cr20)z

2
3 .

Applying Sylvester’s criterion we deduce that Q̂3 is positive definite, while Q̂1, Q̂2

enjoy the same property if and only if the following conditions are satisfied

r20(C − A) + β2 > 0 , r20(C − B) + β2 > 0 .

We thus have the following theorem.

Theorem 3.2.5. Let s0 := (r0 e3, e3), r0 6= 0, be a solution to (3.26) with A 6= B

(hanging spinning asymmetric top). Then the following properties hold.

(i) If C ≥ A,B, then s1 is always stable.

(ii) If either C < A,B, or A ≤ C < B, or else B ≤ C < A, then s1 is stable
provided

r20 <
β2

M − C
,

where M := max{B,C}.

Steady Precession. Our final objective is to present stability properties of motions
in the SP classes defined in (3.29)–(3.30). A detailed study of these properties in
the general case is beyond our scopes, and we refer the interested reader to [10,
pp. 87–89]. Also for the application that we will develop later on in the case when
the cavity is liquid-filled, we shall limit ourselves to analyze the stability of steady
precessions in the class SP1 (analogous considerations will hold for SP2). We thus
choose

s0 := (λγ0, γ0 = γ02e2 + γ03e3) , γ03 =
β2

λ2(B − C)
, |γ03| < 1 . (3.42)

In such a case, the functions Vi’s in (3.32) become

V1 := A ζ2
1 + B (ζ2

2 + +2λγ02ζ2) + C (ζ2
3 + 2λγ03ζ3) − 2β2 z3 ,

V2 := A ζ1z1 + B (ζ2z2 + λγ02z2 + γ02ζ2) + C (ζ3z3 + λγ03z3 + γ03ζ3)

V3 := z2
1 + z2

2 + z2
3 + 2γ01z1 + 2γ02z2 .

(3.43)
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Following [2], we consider the following function

V := V1 − 2λV2 + λ2 B V3 + µV 2
3 , µ > 0 .

If we replace (3.43) in the latter and take into account the expression for γ03

in (3.42), we get that the contribution of the linear terms drops out and, more
precisely, we find

V = Q1 + Q2 + Q3 + f

Q1 := A ζ2
1 − 2λA ζ1z1 + λ2B z2

1

Q2 := B ζ2
2 − 2λB ζ2z2 + (λ2B + µ γ2

02) z
2
2

Q2 := C ζ2
2 − 2λC ζ3z3 + (λ2B + µ γ2

03) z
2
3

|f| < ε |z|2 ,

arbitrary small ε > 0. By applying Sylvester’s criterion, we deduce at once that
the Qi’s are positive definite if B > A,C. Thus, restricting V to a sufficiently small
neighborhood of (ζ = 0, z = 0), with the help of Proposition 3.0.1 we deduce the
following.

Theorem 3.2.6. Steady precessions of the type (3.42), namely, in the class SP1,
are stable, provided B > A,C.

In an entirely analogous way, one can show the following.

Theorem 3.2.7. Steady precessions in the class SP2 are stable, provided A > B,C.

Remark 3.2.8. From the results just proved it turns out that steady precessions
satisfying the stated stability conditions must have γ03 > 0. This means that the
e3-axis rotates around aO with the center of massC of B below the horizontal plane,
PO, passing through O (“hanging steady precession”). However, a stability analysis
is also available for steady precessions with γ03 < 0, namely, when C is above PO

(“upright steady precessions”). For example, one can show [10, p. 88] that when
C > B, and A > B, the generic motion (3.42) is unstable if λ2 <

√
3 β2/

√
B(C − B).

3.2.1.2 Unsteady Motions.

The full class of these motions is obtained by solving (3.18)2–(3.19) under pre-
scribed initial conditions on the angular velocity, ω, and the “orientation” of
the body, γ. This problem, in its generality, has attracted the attention of many
prominent mathematicians of the second half of the 19th and early 20th centuries,
including S.V. Kovalevskaya, A.M. Lyapunov and T. Levi-Civita, who pro-
vided fundamental contributions to its resolution. We will not discuss any detail
here, referring the interested reader to the comprehensive monograph [10].
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What instead we would like to emphasize in this context is that, generically
speaking, unsteady motions of a hollow heavy body B with a fixed point may
present permanent complicated, and even “chaotic”, characteristics that, as we
shall see later on, eventually must disappear if the interior of the body is entirely
filled with a viscous liquid.

To give a significant idea of how “complex” the motion can be, it is enough
to observe, for example, that the center of mass C of B moves like the point mass
of a spherical pendulum. Thus, as is well known, the motion of C, in general, is not
necessarily periodic, with C describing a trajectory that lies in the zone between
two horizontal concentric circles centered at points of the vertical axis passing
through O; see, e.g., [14, Section 5.3].

Another, not less interesting example is furnished by the symmetric top when
spinning in its upright position. As we have seen in the previous section, this
motion is stable if and only if the angular velocity is sufficiently large (see (3.36)).
This means, in particular, that if slightly perturbed, the top will still move with
its axis, e3 in a neighborhood of the vertical axis passing through the fixed point
O. However, it is very well known that the subsequent motion of the axis e3 (and
of the top as a result) can be very complicated, with the generic of its points
describing an intricate path, depending on the given initial conditions see [16,
§204].

As we shall show in a later chapter, if the body contains a cavity entirely filled
with a viscous liquid, involved motions of the above type can at most occur only
during a finite interval of time, whose length may depend (all other parameters
being fixed) on the viscosity of the liquid (the larger the viscosity the shorter
the interval). After that, the liquid, thanks to its incompressibility property, will
perform a strong stabilizing effect that, eventually, will bring the coupled system
to a steady terminal state that, at times, may be even the rest.

3.2.2 Motion Around a Fixed Axis

The interesting situation occurs when the axis of rotation r is horizontal and
C 6∈ r (compound or physical pendulum). Assuming, as usual, that the constraint
is frictionless, we thus have that all reaction forces must be orthogonal to r. Conse-
quently, for arbitrary O ∈ r and e3 parallel to r, it follows τO ·e3 = 0. Furthermore,
clearly, ω(t) = ω(t)e3, so that e3 ·JO ·ω = Cω, where C is the moment of inertia of
B with respect to r. Finally, choosingO and e1 in such a way that xC = `e1, ` > 0,
we deduce that the torque due to the gravity is given by MO = MB g `e1 × γ,
where γ = (γ1, γ2, 0) satisfies (3.19). Therefore, projecting (3.1)2 along e3 we
obtain that the motion of B is governed by the following set of equations

ω̇ = α2 γ2 , γ̇1 = γ2 ω , γ̇2 = −γ1 ω , γ2
1 + γ2

2 = 1 , (3.44)

with α2 := MBg `/C.
From (3.44) we immediately infer that two and only two steady-state motions

(ω̇ = 0) are allowed. They correspond to the equilibrium configurations where
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ω ≡ 0 and either γ1 = 1 (C at its lowest position) or γ1 = −1 (C at its highest
position). The stability of these equilibria is very simply studied with the help
of Proposition 3.0.1 and Proposition 3.0.2. Indeed, from (3.44) we deduce the
following first (total energy) integral

T − U := 1
2 ω

2 − α2 γ1 = const . (3.45)

Therefore, denoting by (0, γ0 = γ0e1) the generic equilibrium and by (ζ(t), z(t) +
γ0) a corresponding perturbed motion, from (3.44)4 and (3.45) we deduce that
the following functions

V1 := ζ2 − 2α2z1 , V2 := z2
1 + z2

2 + 2γ0z1 ,

must be constant as well. Now, if γ0 = 1 (C in its lowest position) we choose

V := V1 + α2 V2 = ζ2 + α2(z2
1 + z2

2)

from which, in view of Proposition 3.0.1, we immediately deduce the stability of
such equilibrium configuration. On the other hand, we can also readily prove that
the other equilibrium (0, γ0 = −e1) is unstable. To this end, choosing

V := ζ z2 ,

from (3.44) we deduce
V̇ = α2 z2

2 + ζ2 − z1 ζ
2.

Thus, if we define

U := {(ζ, z) ∈ R × R2 : |z1| < 1
2
} , U1 := {(ζ, z) ∈ R × R3 : ζ z2 > 0} ,

we recognize at once that all assumptions of Proposition 3.0.2 are recovered thus
showing that (0, γ0 = −e1) is unstable.

We end this section with a few –but important for future reference– com-
ments about the generic motion of the compound pendulum. As is well known, its
semiquantitative behavior can be obtained from (3.44) by means of the so-called
“Weierstrass argument,” based on the study of a suitable elliptic integral [14, §5.2].
In particular, introducing the non-dimensional quantity η := (T (0) − U(0))/α2 it
can be shown that the motion of the compound pendulum will fall in one of the
following categories: (i) Equilibrium in the above-mentioned configurations when
η = ±1; (ii) Oscillation between two symmetric configurations if η ∈ (−1, 1), and
(iii) Continuous rotation around r if η > 1.
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Chapter 4

Cavity Filled with an Inviscid Liquid

In this chapter we begin to study the motion of the rigid body, B, when its interior
cavity, C , is entirely filled with a liquid. Following the pioneering approach of
Stokes [19, §13] and Zhukowskiy [22] we will first consider the situation when
the liquid is inviscid (µ = 0) and its motion is irrotational, namely, the vorticity
field is identically zero. In the case when C is simply connected –an assumption
we shall keep throughout, for simplicity– the latter implies that the (absolute)
velocity field of the liquid is potential-like. Under this hypothesis, one shows that
the dynamics of the coupled system body-liquid, S , is reduced to that of a single

“transformed” rigid body, whose inertia tensor is the sum of the inertia tensor JO

of B and a symmetric, non-negative definite tensor J∗O that depends only on the
density of the liquid and the shape of the cavity. In other words, the dynamics
of the coupled system liquid-body becomes that of a system with finite degrees of
freedom. One important consequence of this result is that the stability analysis
of the steady-state motions of S is entirely analogous to that performed in the
previous chapter for the rigid body with an empty cavity, by just replacing JO

with JO + J∗O.

Another important aspect is that, already for this simplified model, we are
able to show, in specific instances, that the presence of the liquid can dramatically
change the dynamics of the body. As a matter of fact, we will prove that in
fairly common cases (simple shapes of body and cavity) the liquid can totally
alter the stability properties of B, by rendering stable certain steady-state motions

(permanent rotations) that are unstable in absence of the liquid, and vice-versa.

It should now be observed that, while the instability conditions formulated
in the class of irrotational liquid flow, I, continue clearly to be valid in a more
general class of motions, the stability results derived in the same class may not be
completely satisfactory. Stated differently, a steady-state motion that is stable in
the class I may turn out to be unstable in a larger class of perturbations. These
considerations then lead us to investigate the stability properties in a class of
liquid motions, C, that is physically relevant and, in principle, strictly contains I.
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An entirely natural choice is to pick C to be the class of solutions to (2.20)–(2.24)
that satisfy (in a suitable sense) conservation of total energy and (axial) angular
momentum. We shall thus perform a stability analysis of steady state motions in
C by using a simple variant of Proposition 3.0.1 (see Proposition 4.5.5) where now
the stability of the liquid component is measured in terms of the magnitude of
its kinetic energy. In this manner we are able to show that most stability results
proved in Section 3.2.1.2 for the heavy body with a fixed point O, continue to hold
in the class C, provided we replace JO with the inertia tensor IO of the coupled
system S . As far as steady-state inertial motions, we can show that permanent
rotations occurring around the central axis of maximum moment of inertia are
stable but, unlike Theorem 3.1.1, we cannot draw any conclusion about those
occurring around the central axis of minimum moment of inertia. As a matter of
fact, as we detailed in the introductory chapter, the seminal experimental work
of Lord Kelvin strongly suggests that permanent rotations occurring around
the axis of minimum moment of inertia are unstable, no matter how large the
magnitude of the initial angular velocity. Seemingly, the inviscid theory is not
able to furnish an explanation of this phenomenon. However, as we will show in a
later chapter, the same will find a full and rigorous mathematical interpretation
if we assume that the cavity is entirely filled with a viscous Navier-Stokes liquid.

4.1 Irrotational Flow

We will suppose throughout that the the volume C occupied by the cavity is
entirely filled with an inviscid (µ = 0) liquid L . We shall next admit that the
generic motion of L is irrotational, namely, the vorticity field associated with the
absolute velocity field u is identically vanishing:

curl u(x, t) = 0 , (x, t) ∈ C × (0,∞) . (4.1)

Under the further assumption that the cavity is simply connected 1 condition (4.1)
implies the existence of a single-valued function ϕ = ϕ(x, t) such that

u = ∇ϕ . (4.2)

From (4.2) and (2.17)2,3 we immediately deduce that the function ϕ must satisfy
the following Neumann problem at each time t > 0

∆ϕ = 0 in C , ∂ϕ

∂n
= (ξO + ω × x) · n at ∂C . (4.3)

Moreover, observing that

(∇ϕ− ξO − ω × x) · ∇∇ϕ = 1
2∇(∇ϕ)2 −∇[(ξO − ω × x) · ∇ϕ]− ω × x · ∇ϕ ,

1This hypothesis is made for the sake of simplicity. Most of the basic properties that we shall
prove will continue to hold also in the more general case with the appropriate modification.
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we infer that (2.17)1 (with µ = 0) is satisfied by choosing

p̃ = −∂ϕ
∂t

+ (ξO − ω × x) · ∇ϕ− 1
2 (∇ϕ)2 + p0 , (4.4)

where p0 = p0(t) is arbitrary. Summarizing, we may state that the motion of a
rigid body with a simply-connected cavity entirely filled with an inviscid liquid is
governed, under the assumption (4.1), by (4.3) along with (2.18)–(2.19) that now
take the form

M ξ̇G +M ω × ξG = F + Φ

ȦO + ω × AO +M ξO × ξG = MO + τO ,
(4.5)

with

AO := JO · ω +MBxC × ξO +

∫

C

ρx ×∇ϕ . (4.6)

The resolution of (4.3)–(4.6), under suitable assumption on the constraints,
can be addressed as follows. From (4.3) we solve for ϕ as a functional of ξO and
ω, then replace it back into (4.6) and solve (4.5) for ξO and ω. This is, basically,
the procedure adopted by Zhukowskiy, and that we shall present in the next
section.

4.2 Zhukowskiy Potentials. Reduction to a System with

Finite Degrees of Freedom

One of the important achievements of Zhukovskiy’s work is the proof that, under
the irrotational assumption (4.1), the motion of the coupled system liquid-solid
can be reduced to that of a suitable mechanical system having a finite number of
degrees of freedom. To show this, we begin to notice that a solution to (4.3) can
be sought in the form

ϕ = φ+ ψ ,

∆φ = 0 in C , ∂φ

∂n
= ξO ·n at ∂C ,

∆ψ = 0 in C , ∂ψ

∂n
= ω × x · n at ∂C .

(4.7)

Thus, introducing the six time-independent functions φi = φi(x), ψi = ψi(x),
i = 1, 2, 3 with the properties

∆φi = 0 in C , ∂φi

∂n
= ni at ∂C ,

∆ψi = 0 in C , ∂ψi

∂n
= ei × x · n at ∂C ,

(4.8)
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we recognize that the (unique) solutions to (4.7)2,3 have the following expressions

φ(x, t) = ξOi(t)φi(x) , ψ(x, t) = ωi(t)ψi(x) . (4.9)

The functions {φi, ψi} are independent of the liquid density and depend (at most)
on the “shape” of the cavity. They are often referred to as Zhukowskiy potentials.

We next observe that the fields φi are easily determined. In fact, for any
cavity C, they are of the form

φi(x) = xi , i = 1, 2, 3 ,

from which, it easily follows that
∫

C

ρx ×∇φ =

∫

C

ρx × ξO . (4.10)

On the other hand, the form of the fields ψi is, in general, more involved,
and they can be obtained in closed form (or known within a good approximation)
only for special “shapes” of the cavity (see [13, pp. 53–63] and also next section).
In any case, they enjoy a number of fundamental properties that we would like to
state in a very general form. To this end, we recall that, by well-known results,
if C Lipschitz, then the Neumann problem in (4.8)3,4 has a unique weak solution
ψi ∈ C∞(Ω) ∩W 1,2(Ω), where the boundary condition is achieved in the sense of
W−1/2,2(∂C) []. We have the following.

Lemma 4.2.1. Let C be Lipschitz and let ψi be the weak solution to (4.8)3,4. Define
the second-order tensor J∗O through its components in the base {ei} as follows 2

(J∗O)ij =

∫

∂C

ρψi
∂ψj

∂n
, i, j = 1, 2, 3. (4.11)

Then, J∗O is symmetric, and positive semidefinite:

a · J∗O · a ≥ 0 , for all a ∈ R3 − {0} . (4.12)

In addition, J∗O is positive definite if there exist points xi ∈ ∂C, i = 1, 2, 3 such
that the vectors (x1 × n(x1),x2 × n(x2),x3 × n(x3)) are linearly independent,
whereas J∗O is identically vanishing if C is a ball centered at O.

Proof. From (4.8)3,4 it follows, in particular, that ∇ψi is identically vanishing
if and only if n × x = 0 for all x ∈ ∂C, which proves the last assertion. We next
show the symmetry of the tensor J∗O. Actually, multiplying both sides of (4.8)3 by
ψj and integrating by parts we get

(J∗O)ij =

∫

C

∇ψi · ∇ψj , i, j = 1, 2, 3 , (4.13)

2The surface integral on the right-hand side of (4.11) should be interpreted, here and in the
following, as the duality pair W 1/2,2(∂C) → W−1/2,2(∂C). We prefer to use this notation for
sake of simplicity.



4.2. Zhukowskiy Potentials 33

which delivers the desired property. Let a = αiei and set

ψ := αiψi .

Multiplying both sides of (4.8)3 by αi and summing over the index i, we obtain
∆ψ = 0 in C. Multiplying the latter equation by ψ and integrating over C we thus
deduce

‖∇ψ‖2
2 =

3∑

i,j=1

αiαj

∫

∂C

ψi
∂ψj

∂n
≡ 1

ρ
a · J∗O · a ,

which proves (4.12). Moreover, if a·J∗O ·a = 0, from the the last displayed equation
we get ψ = const., which furnishes a · x × n = 0, for all x ∈ ∂C. This condition,
under the stated assumptions, in turn implies a = 0, and the proof of the lemma
is completed.

�

We now analyze some consequences of Lemma 4.2.1. To this end, we notice
that, by (4.9), ∫

C

ρx ×∇ψ = ωi

∫

C

ρx ×∇ψi ,

so that, integrating by parts,

∫

C

ρx ×∇ψ = ωi

∫

∂C

ρψix × n . (4.14)

Taking into account that

x × n · ej =
∂ψj

∂n
at ∂C

by (4.14) and Lemma 4.2.1 we deduce

∫

C

ρx ×∇ψ = J∗O · ω . (4.15)

From (4.10), (4.15) and (2.24) we conclude the following important result basically
due to Zhukowskiy.

Theorem 4.2.2. Suppose the cavity C is Lipschitz and simply connected and that
the motion of the liquid is irrotational. Then the total angular momentum of the
coupled system body-liquid with respect to the point O is given by

AO = J1
O · ω +M xG × ξO , (4.16)

where J1
O := JO + J∗O, with J∗O defined in (4.11).
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Remark 4.2.3. Denote by B∗, a rigid body having the same density as the liquid
and inertia tensor J∗O. Such a body was called by Stokes equivalent body [19, p.
153]. Then, the fundamental consequence of Theorem 4.2.2 is that provided we

restrict ourselves to irrotational flow, the liquid can be replaced by an equivalent
body, without affecting the motion of the coupled system S . More precisely, the
study of the motion of S can be performed according to the following procedure.
At first, for a given cavity, we solve the Neumann problem (4.8)3.4. As soon as the
functions ψi are obtained, the motion of S is reduced to that of the rigid body,
B1, governed by (4.5) with the “modified” angular momentum (4.16), where the
inertia tensor JO of B is replaced by the tensor J1

O := JO + J∗O. The body B1,
obtained by rigidly “connecting” B with the equvalent body B∗, was called by
Zhukovskiy transformed body, and we shall accordingly call J1

O the “transformed
inertia tensor.” Therefore, the contribution of the liquid to the motion of the body
relies all in the tensor quantity J∗O. For those cavities where J∗O vanishes, the liquid
has no influence on the motion of B, like, for instance, when the cavity is a ball.
However, as we shall show in the Section 4.4, there are significant cases where J∗O is
not zero and the dynamics of B is dramatically modified. Finally, we observe that,
once the motion of the transformed body is resolved, namely, ω and ξ are found,
then we can resolve for the motion of the liquid as well. In fact, its (absolute)
velocity field is provided by (4.2) with

ϕ(x, t) = ξOi(t)xi + ωi(t)ψi(x) ,

and ψi solving (4.8)2, while the corresponding pressure field is given in (4.4).

4.3 Ellipsoidal Cavity

In order to investigate how the presence of the liquid may effectively modify the
motion of the rigid body, it is necessary to compute explicitly Zhukovskiy’s po-
tentials ψi. In general, this is, of course, a hopeless task. However, if the shape
of the cavity is not too complicated, one is able to express these functions in a
simple closed form [13, pp. 52–63]. Objective of this section is to evaluate the
potentials ψi and the corresponding tensor J∗O in the case when the cavity is an
ellipsoid. In doing this, we shall closely follow the elegant method of Lamb [9,
§110], successively employed by Zhukovskiy [22, §12].

Assume the cavity C is given by

C :=
{
x ∈ R3 : F (x1, x2, x3) :=

3∑

i=1

x2
i

α2
i

− 1 < 0
}
,

where αi > 0, i = 1, 2, 3. We then get that the unit normal n at ∂C has components

ni =
1

|∇F |
∂F

∂xi
=

2

|∇F |
xi

α2
i

.
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Consequently,

e1 × x ·n =
1

|∇F |
( 1

α2
3

− 1

α2
2

)
x2x3 .

This suggests to choose ψ1 as follows

ψ1(x1, x2, x3) = A1 x2x3 ,

where A1 is a constant to be determined later. Clearly, ψ1 is harmonic in the whole
of R3 and, in particular, in C. Moreover, since

∂ψ1

∂n
≡ n · ∇ψ1 =

2A

|∇F |
( 1

α2
2

+
1

α2
3

)
x2x3

by imposing the boundary condition (4.8)4 we find A1 = (α2
2 − α2

3)/(α
2
2 + α2

3) .
Arguing in exactly the same way, we may find also ψ2 and ψ3, and thus conclude
with the following expression for the potentials

ψ1 = A1 x2x3 , ψ2 = A2 x3x1 , ψ3 = A3 x2x1

A1 =
α2

2 − α2
3

α2
2 + α2

3

, A2 =
α2

3 − α2
1

α2
1 + α2

3

, A3 =
α2

1 − α2
2

α2
1 + α2

2

. .
(4.17)

Our next goal is to use (4.17) to determine the components of the tensor J∗O,
with O center of the ellipsoid, in the base with origin at O and axes directed along
the principal axes of the ellipsoid. To this end, we observe that from (4.13) and
(4.17) it follows that

(J∗O)11 = A2
1

∫

C

ρ (x2
2 + x2

3) , (J∗O)22 = A2
2

∫

C

ρ (x2
1 + x2

3) , (J∗O)33 = A2
3

∫

C

ρ (x2
1 + x2

2) ,

(J∗O)ij = AiAj

∫

C

xixj , i 6= j .

We also recall the following well-known formulas (e.g. [12, §48])

∫

C

(x2
1 + x2

2) = 4
15 π α1α2α3(α

2
1 + α2

2) ,

∫

C

(x2
2 + x2

3) = 4
15 π α1α2α3(α

2
2 + α2

3) ,

∫

C

(x2
1 + x2

3) = 4
15 π α1α2α3(α

2
1 + α2

3) .

(4.18)

Therefore, taking into account that, denoting by m the mass of the liquid, we have

m = ρ
4

3
α1α2α3 , (4.19)
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and that, in view of elementary symmetry properties, the off-diagonal components
vanish, we conclude

A∗ := (J∗O)11 =
m

5

(α2
2 − α2

3)
2

α2
2 + α2

3

B∗ := (J∗O)22 =
m

5

(α2
3 − α2

1)
2

α2
3 + α2

1

C∗ := (J∗O)33 =
m

5

(α2
1 − α2

2)
2

α2
1 + α2

2

(J∗O)ij = 0 , i 6= j .

(4.20)

Notice that, in particular, in the frame with the origin at the center of the ellipsoid
and axes directed along the principal axes of the ellipsoid the tensor J∗O turns out
to be diagonal.

Remark 4.3.1. It is interesting to compare the principal moments A∗, B∗ and C∗

of the “equivalent body” B∗ (see Remark 4.2.3) with those A∗, B∗ and C∗ of the
liquid. From (4.18) and (4.19) we immediately deduce

A∗ =
m

5
(α2

2 + α2
3) , B∗ =

m

5
(α2

3 + α2
1) , C∗ =

m

5
(α2

1 + α2
2) ,

which implies

A∗ < A∗ , B∗ < B∗ , C∗ < C∗ .

As a result, the moment of inertia of the equivalent body with respect to any

axis passing through the point O is strictly smaller than the analogous quantity
evaluated for the liquid. In fact, as shown by Zhukowskiy [22, §9], this property

continues to hold for cavities of arbitrary shape.

4.4 On the Stability of Steady-State Motions

Another fundamental consequence of Theorem 4.2.2 (see also Remark 4.2.3), is
that the stability of steady-state motions of the coupled system body-liquid when
the cavity is entirely filled with an inviscid liquid, may be reduced to the same
problem for the “transformed body.” at least if we confine ourselves to the case

of irrotational flow. Thus, taking the frame {O, ei} as principal frame of inertia
for the transformed inertia tensor J1

O, and denoting by A1, B1 and C1 the corre-
sponding principal moments of inertia, we may conclude with the following.

Theorem 4.4.1. All stability/instability theorems established in Section 3.1.1 and
Section 3.2.1 continue to hold when the cavity is entirely filled with an inviscid
liquid, if we formally replace in their statements the quantities A, B and C with
A1, B1 and C1, respectively, and we restrict ourselves to irrotational flow of the
liquid.
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Now, as we know, the hypotheses of most of the results mentioned in Theorem
4.4.1 are based on the relative magnitude of the principal moments of inertia.
However, as somehow expected, the relative magnitude of the “transformed” A1,
B1 and C1 need not be the same as that of the analogous A, B and C evaluated
when the cavity is empty. Consequently, the stability properties of the coupled
system can be, in principle, entirely different than the analogous ones with an
empty cavity. In order to show that this can be indeed the case, let us suppose
that B is a solid ellipsoidal shell of constant density, ρ̂, contained between the two
ellipsoids of equations

3∑

i=1

x2
i

a2
i

= 1 and

3∑

i=1

x2
i

α2
i

= 1 , (4.21)

respectively, with αi := η ai, η ∈ (0, 1). We take O coinciding with the center of
both ellipsoids and ei in the direction of the semi-axis ai. Due to the geometric
symmetry property of B and its uniform distribution of mass, we have that O ≡ C
and {O, ei} is a principal (central) frame of inertia for B. The principal moments of
inertia A, B and C are easily calculated. Actually, they are the differences between
the analogous quantity computed for the larger (AL, BL and CL) and smaller (AS ,
BS and CS) ellipsoid, with the latter assumed to have the same density ρ̂. Thus,
observing that

MB = ρ̂
4

3
π(a1a2a3 − α1α2α3) = ρ̂

4

3
π

(
1 − η3

)
a1a2a3 ,

with the help of (4.18) (with α1 ≡ ai) and (3.2), we deduce

A = AL − AS =
4

15
π ρ̂ a1a2a3(a

2
2 + a2

3) −
4

15
π ρ̂ η5a1a2a3 (a2

2 + a2
3)

=
1

5
γ MB (a2

2 + a2
3) , γ :=

1 − η5

1 − η3 ,

(4.22)

and, likewise,

B = BL − BS =
1

5
γ MB (a2

1 + a2
3)

C = CL − CS =
1

5
γ MB (a2

1 + a2
2) .

(4.23)

Assume, to fix the ideas,

a3 < a2 < a1 ; (4.24)

we then have

A < B < C . (4.25)

Therefore, the moment of inertia of the system around (O, e3) is maximum and
so, by Theorem 3.1.1, we may conclude that in absence of external forces (inertial
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motion), the permanent rotation around (O, e3) is stable, whereas that around

(O, e2) is unstable.
We now suppose that the liquid entirely fills the interior of the smaller el-

lipsoid, C, described by the second equation in (4.21). Since the liquid is homoge-
neous, from the results of the previous section we know that {O, ei} is a principal
frame of inertia also for J∗O, with components given in (4.19). Thus, recalling that
αi = η ai, we find

A∗ =
m

5
η2 (a2

2 − a2
3)

2

a2
2 + a2

3

, B∗ =
m

5
η2 (a2

3 − a2
1)

2

a2
3 + a2

1

, C∗ =
m

5
η2 (a2

1 − a2
2)

2

a2
1 + a2

2

,

where

m =
4

3
π ρα1α2α3 =

4

3
π η3 ρ a1a2a3

is the mass of the liquid. Accordingly, the principal moments of inertia of the
transformed body are then given by

A1 := A + A∗ =
1

5

[
MB γ (a2

2 + a2
3) +mη2 (a2

2 − a2
3)

2

a2
2 + a2

3

]

B1 := B + B∗ =
1

5

[
MB γ (a2

1 + a2
3) +mη2 (a2

3 − a2
1)

2

a2
3 + a2

1

]

C1 := C + C∗ =
1

5

[
MB γ (a2

1 + a2
2) +mη2 (a2

1 − a2
2)

2

a2
1 + a2

2

]
(4.26)

We want to show that we can pick a1, a2 and a3, densities ρ, ρ̂, and thickness η in
such a way that (4.24) is still satisfied (so that (4.25) still holds) but

A1 < C1 < B1 . (4.27)

This will imply, again by Theorem 3.1.1, that the rotation around (O, e3) is now
unstable, while that around (O, e2) becomes stable.

To this end, we choose (for instance)

a2 =
1√
2
a1 , a3 = ε a1 ,

with ε ∈ (0, 1/
√

2). Then, after a straightforward calculation, we show that the
condition C1 < B1 is equivalent to

MB γ (1 − 2ε2) <
m

3
η2 6(ε2 − 1)2 − (1 + ε2)

1 + ε2
,

which is certainly satisfied by taking ε sufficiently small, provided

m >
3

5

γ

η2
MB ⇐⇒ ρ >

3

5

1 − η5

η5
ρ̂ . (4.28)
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In a similar manner, we show that the requirement A1 < C1 is equivalent to

MB γ (ε2 − 1) <
m

6
η2 1 + ε2 − 3 (1 − 2ε2)2

1 + ε2
,

that is certainly satisfied by taking ε small enough, provided

m < 3
γ

η2
MB ⇐⇒ ρ < 3

1 − η5

η5
ρ̂ . (4.29)

We may thus conclude that condition (4.27) is met in the case at hand, whenever
the density of the body and of the liquid satisfy simultaneously (4.28) and (4.29),
for a suitable thickness of the shell. For example, if the ellipsoidal shell is glass
(density = 2.6 gr/cm3) and the liquid is water (density = 1.0 gr/cm3) both requi-
sites are certainly met, provided we choose η ' .91, that is, the shell is sufficiently
thin.

Remark 4.4.2. We wish to emphasize that the inviscid theory, in the class of

irrotational flow, is not able to provide a mathematical interpretation of Kelvin’s

experiment described in the introductory chapter. Actually, take as body B a thin
spheroidal shell of constant density such that two axes of the spheroid are equal,
say, a1 = a2. In this situation, from (4.26) we obtain A1 = B1 and C1 = C. Thus,
no matter whether C1 < A1 (prolate spheroid) or C1 > A1 (oblate spheroid), in
view of Theorem 4.4.1 the permanent rotation around a3 is always stable, which
is at odds with Kelvin’s finding that shows stability only in the latter case.

4.5 Further Stability Results

Results described in Theorem 4.4.1 are obtained under the assumption that the
flow of the liquid is irrotational. While this might be satisfactory in the instability

analysis of a specific steady-state motion, it is no longer so if we are instead
interested in its stability properties. This because, even though a motion may
turn out to be stable in the class of irrotational perturbations, I, it could still
be unstable in a more general class of perturbations that do not satisfy such a
condition. This observation then leads us to study the system (2.20)–(2.23), with
µ = 0, in its full generality and over the entire time interval (0,∞). However,
this would represent a formidable task since, as is well known, already in the
case where the motion of the body is prescribed, it is not known whether the
initial-boundary value problem for the corresponding (Euler) equations admits
a global solution, even of “weak” type. Nevertheless, if we suppose that (2.20)–
(2.23) admits solutions satisfying, in a suitable sense, balance of energy and (axial)
angular momentum for a “sufficiently rich” range of initial data, we can draw a
number of interesting conclusions that, as we shall analyze in full details later
on, will be very useful also in understanding the effect of viscosity in analogous
stability questions; see Remark 4.5.4.
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With this in mind, we begin to consider the case when the body is heavy
and constrained to move around a fixed point O. As in Section 3.2.1.2, we assume
that the center of mass G of S lies on one of the axes, (O, e3) say, of the principal
frame of inertia {O, ei}. Without loss of generality, we orient {O, ei} in such a
way that xG = z0 e3, z0 > 0. In this a case, (2.20)–(2.23) along with (3.19)2 and
(3.20) furnish

ρ
(∂v
∂t

+ v · ∇v + ω̇ × x + 2ω × v
)

= −∇p

div v = 0




 (x, t) ∈ C × (0,∞)

v(x, t) · n = 0 , (x, t) ∈ ∂C × (0,∞)

(4.30)

and

K̇O + ω × KO = β2e3 × γ , KO := IO · ω +

∫

C

ρx × v ,

γ̇ + ω × γ = 0

(4.31)

with IO and β2 given in (2.23) and (3.25). Following [6], we introduce the new
variable

ω∗ := I−1
O · KO ≡ ω + I−1

O ·
(∫

C

ρx × v

)
, (4.32)

so that the preceding equations become

ρ
(∂v
∂t

+ v · ∇v + (ω̇∗ + ȧ) × x + 2(ω∗ + a) × v
)

= −∇p

div v = 0




 in C × (0,∞)

v(x, t) · n = 0 , at ∂C × (0,∞)
(4.33)

and
I · ω̇∗ + (ω∗ + a) × (I · ω∗) = β2e3 × γ

γ̇ + (ω∗ + a) × γ = 0

}
in (0,∞) , (4.34)

with I ≡ IO , and

a = a(v) := −I−1 ·
(∫

C

ρx × v

)
. (4.35)

Now, the remarkable feature is that equations (4.33)–(4.35), in addition to the
geometric constraint (3.22), possess two first integrals (conservation laws) that
are (formally) analogous to (3.20) and (3.21). To see this, let us dot-multiply both
sides of (4.33)1 by v and integrate by parts over C. We thus have, with the help
of (4.33)2,3,

1
2
ρ
d

dt
‖v(t)‖2

2 = −(ω̇∗ + ȧ) ·
∫

C

ρx × v . (4.36)
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Recalling that I is symmetric, from (4.34) and (4.35) we infer

−ω̇∗ ·
∫

C

ρx × v = a · I · ω̇∗ = −ω∗ × (I · ω∗) · a + β2e3 × γ · a . (4.37)

Furthermore, by dot-multiplying both sides of (4.34)1 by ω∗ and using (4.34)2, we
get

1
2

d

dt

(
ω∗ · I · ω∗) − β2 γ̇3 = ω∗ × (I · ω∗) · a − β2e3 × γ · a ,

whereas, by (4.35),

−ȧ ·
∫

C

ρx × v = 1
2

d

dt
(a · I · a) .

Combining the last two displayed equations with (4.36) and (4.37), we (formally)
conclude

E(t) − U(t) = E(0) − U(0) , all t ∈ [0,∞) , (4.38)

where
E := 1

2

(
ρ ‖v‖2

2 − a · I · a + ω∗ · I · ω∗

)
,

U := β2 γ3 .
(4.39)

In addition to the first integral (4.38) we shall now deduce another one con-
cerning the component of the angular momentum along the vertical direction. In
fact, if we dot-multiply first both sides of (4.34)1 by γ, then both sides of (4.34)2
by I · ω∗, and afterword sum side-by-side the resulting equations, we get

γ(t) · I · ω∗(t) = γ(0) · I · ω∗(0) . (4.40)

Finally, from (4.34)2 we also deduce

γ2
1(t) + γ2

2(t) + γ2
3 (t) = 1 . (4.41)

Let us indicate by C the class of solutions (ω∗, γ, v) to (4.33)–(4.34) that
satisfy (4.38), (4.40) and (4.41). Clearly, C is not empty, since it contains the class
I of irrotational flow

I :=
{
(ω∗,u − (ω∗ + a) × x, γ) : u = ∇ϕ

}

Our objective is to investigate the stability of some relevant steady-state motions
in the class C. To this end, set

S0 :=
{
(ω∗, γ, v ≡ 0) , (ω∗, γ) ∈ S0 := PR∪ SP0∪ SP1 ∪ SP2

}
,

with PR and SPi, i = 0, 1, 2, defined in (3.28)–(3.30) by replacing A,B, and C

with A,B, and C, respectively. Taking into account the results of Section 3.2.1.1,
one immediately checks that every s0 ∈ S0 is a steady-state solutions to (4.33)–
(4.34), representing a uniform rotation around the vertical axis through O, or else
a steady precession of the coupled system S as a whole, with the liquid being at
(relative) rest; see Section 3.2.1.1.
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Remark 4.5.1. It is somehow relevant to observe that the class S0 is a strict

subset of the class of all possible (and “sufficiently smooth”) time-independent
solutions to (4.32)–(4.35). In fact, denote by S1

0 the class S0 with the replacement
(A,B,C) → (A1,B1,C1). Then, from the results of Section 4.2, it follows that any
element in the set

S1
0 :=

{(
v0 := ∇(ω0i ψi) − ω × x,ω0, γ0

)
: (ω0, γ0) ∈ S1

0 , ψi solution to (4.8)2
}

is a steady-state solution to (4.30)–(4.31), and therefore to (4.33)–(4.35) after
taking into account the definition (4.32). Notice that S1

0 coincides with S0 only in
those cases when ψi ≡ 0, i = 1, 2, 3. However, as we will see in a later chapter,
in the case of a viscous liquid, S0 exhausts the entire class of time-independent
motions.

A crucial point in the stability analysis we are about to perform is that the
functional (4.39)1 is positive definite in the variables (v,ω∗). In fact, this property
is a consequence of the following result, whose first part is due to Kopachevsky

and Krein [8, §§7.2.2–7.2.4].

Lemma 4.5.2. Let w ∈ L2(C). Then, there is c0 = c0(ρ, C) ∈ (0, 1) such that

‖w‖2
2 ≥ ‖w‖2

2 −
(
ρ I−1 ·

∫

C

x× w

)
·
(∫

C

x × w

)
≥ c0 ‖w‖2

2 .

We are now in a position to investigate the stability property of steady-state
motions in the class C. In this regard, we premise the following.

Definition 4.5.3. An element s0 ∈ S0 is said to be stable (in the class C) if, denoting
by s0 + (ζ(t), z(t), v(t)) an element in the class C, it happens that for any ε > 0
there is δ = δ(ε) > 0 such that

‖v(0)‖2 + |ζ(0)| + |z(0)| < δ =⇒ sup
t≥0

(‖v(t)‖2 + |ζ(t)| + |z(t)|) < ε .

Remark 4.5.4. Notice that the stability property of the liquid is measured in terms
of its kinetic energy.

The following result, a variant of Proposition 3.0.1, furnishes sufficient con-
ditions for the stability of a steady-state solution s0 in the class C.

Proposition 4.5.5. Let s0 ∈ S0 and set y := (ζ, z). Moreover, let F : L2(C) →
[0,∞) be such that

c1‖v‖2 ≤ F (v) ≤ c2‖v‖2 , (4.42)

and let U : y ∈ R3 × R3 → R be continuous and, in addition, positive definite in
a neighborhood I(0) of the origin of R3 × R3, namely,

(i) U(0) = 0,
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(ii) U(y) > 0 for all y ∈ I(0) \ {0}.
Then, if V(t) := F (v(t))+U(y(t)) satisfies V(t) ≤ V(0) in the class C for all t ≥ 0,
s0 is stable.

Proof. Denote by [y] :=
√

ζ2 + z2 the Euclidean norm in R3×R3. Next, Let
ε0 > 0 be such that Bε0

(0) ⊂ I(0). Fix ε ∈ (0, ε0) and set

ξ := min
[y]=ε/2

U(y) > 0.

The minimum exists since U is continuous on Bε0
(0) and the sphere of radius

ε is compact in R3. Moreover, ξ is strictly positive because of condition (ii).
Again by the continuity of U, we find δ0 > 0 such that [y] < δ0 implies U(y) <
1
2

min{ξ, ε, 1
2
c1ε}, with c1 defined in (4.46). Choose δ < min{δ0, 1

2c2

ξ, 1
4

c1

c2

ε} with
c2 as in (4.46). We want to show that

[y(t)] < ε/2 , for all t ≥ 0. (4.43)

Suppose, on the contrary, that t is the first instant of time when [y(t)] = ε/2.
Thus, since F is positive definite and V(t) ≤ V(0) for all t ≥ 0, we deduce with
the help of (4.46)

ξ ≤ V(t) = F (v(t)) + U(y(t)) ≤ c2‖v(0)‖ + U(y(0)) <
ξ

2
+
ξ

2
= ξ ,

which shows a contradiction. Thus, (4.47) holds and, in addition, for all t ≥ 0,

c1‖v(t)‖ ≤ F (v(t)) ≤ V(0) ≤ c2‖v(0)‖ + U(y(0)) < 1
4c1ε+ 1

4 c1ε = 1
2c1ε

which completes the proof.
�

The remarkable feature of this proposition consists in the fact that, as we shall
show shortly, it allows us to prove verbatim most of the stability results established
in Section 3.1.1 also when the cavity is filled with an inviscid liquid, and in a class
of perturbations, in principle, more general than that of irrotational flow, which
only requires the validity of the basic physical principles of conservations of energy
and axial angular momentum. To this end, it will be enough to formally replace

the energy function T −U in that section with the energy functional E −U defined

in (4.39).
As a way of example, let us take s0 = (r0 e3,−e3, 0) (Upright Spinning Top).

From (4.38)–(4.41) we deduce that the following three functions are constant along
solutions in the class C

V1 := 2E + Aζ2
1 + B ζ2

2 + C (ζ2
3 + 2r0ζ3) − 2β2 z3 ,

V2 := Aζ1z1 + B ζ2z2 + C (ζ3z3 + r0z3 − ζ3)

V3 := z2
1 + z2

2 + z2
3 − 2z3,

(4.44)
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where A,B and C are the principal moments of inertia of I in {O, ei}, and

E := 1
2
ρ ‖v‖2

2 − 1
2
a · I · a. (4.45)

Suppose, now, as in Theorem 4.5.6, that A ≤ B < C (Generic Top) and define, in
entirely analogy with (3.42),

V = V1 + 2 r0 V2 + (C r20 − β2)V3 + η V2
3 , η > 0.

Obviously, V(t) = V(0) in the class C. Furthermore from (4.48) and (3.39)–(3.41)
we obtain

V = 2E + V ,

where V is defined in (3.39). Now, by Lemma 4.5.2, F ≡ 2E satisfies the assump-
tion of Proposition 4.5.5. On the other hand, from the proof of Theorem 4.5.6 we
know that if

r20 >
β2

C −M
, M := max{A,B} , (4.46)

the function U ≡ V is (continuous) and positive definite in a neighborhood of
ζ = z = 0. As a result, we conclude with the following.

Theorem 4.5.6. (Upright Spinning Top) Let s0 = (r0 e3,−e3, 0). Then, if (4.50)
holds, s0 is stable in the class C.

By a similar argument, one can show stability results in the class C, en-
tirely analogous to those of Theorem 3.2.5 (Hanging Spinning Top) and Theorem
3.2.6–Theorem 3.2.7 (Steady Precession), with the only replacement (A,B,C) →
(A,B, C).

Remark 4.5.7. We would like to notice that, however, the method just described
does not allow us to extend to the case at hand the result showed in Theorem
3.2.2, when the cavity is empty, regarding the stability of the spinning symmetric
top (Lagrange Top). The reason is due to the fact that, when the cavity is filled
with the liquid, the component ω3 (or ω∗3) is, in general, no longer a first integral,
as it is at once recognized by taking the third component of equation (4.34)1 with
A = B.

Proposition 4.5.5 can also be employed to investigate the stability proper-
ties of permanent rotations in the case of inertial motions. In this situation the
conservation of energy (4.38) becomes

E(t) + 1
2

ω∗(t) · I ·ω∗(t) = E(0) + 1
2

ω∗(0) · I · ω∗(0) , all t ∈ [0,∞) , (4.47)

where E is defined in (4.50) and I ≡ IG. In addition, by dot-multiplying both sides
of (4.34) by I · ω∗ we obtained another first integral:

|I ·ω∗(t)|2 = |I ·ω∗(0)|2 .
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By choosing the body-fixed frame coinciding with the central frame of inertia
of the coupled system liquid-body S , we infer that the previous relation can be
written as

A2 p2
∗(t) + B2 q2∗(t) + C2 r2∗(t) = A2 p2

∗(0) +B2 q2∗(0) + C2 r2∗(0) , (4.48)

where A, B and C are the central moments of inertia of S and ω∗ = (p∗, q∗, r∗).
As before, let us indicate by C the class of solutions (ω, v) to (4.33)–(4.34)

that satisfy (4.51) and (4.52), and let s0 := (ω0 e, v ≡ 0), ω0 6= 0, e ∈ {e1, e2, e3),
be a given permanent rotation.

We shall say that s0 is stable (in the class C) if, denoting by (ω0 e+ζ(t), v(t))
an element in the class C, it happens that for any ε > 0 there is δ = δ(ε) > 0 such
that

‖v(0)‖2 + |ζ(0)| < δ =⇒ sup
t≥0

(‖v(t)‖2 + |ζ(t)|) < ε . (4.49)

We shall now employ Proposition 4.5.5 (with z ≡ 0) to study the stability of the
permanent rotation around the central axis of larger moment of inertia. So, to fix
the ideas, assume A ≤ B < C and take s0 = (r0 e3, v ≡ 0). From (4.51)–(4.52) we
get

E := 2E +Aζ2
1 (t) +B ζ2

2(t) +C ζ2
3 (t) + 2C r0 ζ3(t) = const.

K := A2 ζ2
1 (t) +B2 ζ2

2 (t) +C2 ζ2
3 (t) + 2C2 r0 ζ3(t) = const. .

(4.50)

Mimicking the choice (3.13), we pick

V := C E − K +
1

4 r20 C
2

K2 . (4.51)

If we now replace in (4.55) the expressions for E and K, we infer

V = 2CE(v) + U(ζ) ,

U(ζ) := A(C − A) ζ2
1 + B(C − B) ζ2

2 + C2ζ2
3 + f(ζ) ,

(4.52)

where f is such that, for a given arbitrary η > 0, |f | < η |ζ|2 whenever |ζ| < c η.
Now, from (4.54) and (4.55) it follows that the functional V is constant in the class
C . Moreover, the function U is (continuous) and positive definite in a neighborhood
of ζ = 0 provided

C > B ≥ A .

By Proposition 4.5.5 (with z ≡ 0), (4.50), and Lemma 4.5.2 we then conclude
with the following.

Theorem 4.5.8. (Stability of Permanent Rotations in Inertial Motions) Permanent
rotations around the the axis of maximum moment of inertia are stable in the class
C.
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Remark 4.5.9. As already observed, the stability result in Theorem 4.5.8 is, in
principle, more general than the analogous one stated in Theorem 4.4.1 for the
case of inertial motions, because it is proved in a class C where the perturbed
liquid flow need not be irrotational, but only satisfy the physical principles of
conservation of energy and angular momentum. In this regard and with a view
to Kelvin’s experiment (see Remark 4.4.2), it is important to emphasize that in
the class C, where vorticity is relevant, one is not able to show that permanent
rotations around the axis of minimum moment of inertia are stable. The reason for
this relies on the circumstance that if we mimic the choice (3.11) by replacing 2T
with E, the corresponding Lyapunov function would no longer be positive definite,
due to the presence of the term −2AE which is negative and cannot be balanced
by any other quantity. This fact suggests that vorticity may play an important role
in the explanation of the experiment. Actually, we shall show in a later chapter
that if the liquid is taken to be viscous, the mathematical analysis will entirely
support Kelvin’s experimental finding.


